Cutting Big Data Down to Size
Editor's View
Last week, I wrote about a choice that could need to be made between cloud resources and the Hadoop tool for managing and working with big data. A better question, or a better way to frame the debate, could be as a decision about what is the best way to make use of cloud computing for data management, especially for "big data."
Tim Vogel, a veteran of data management projects for several major investment firms and service providers on Wall Street, has focused views on this subject. He advises that the cloud is best used for the most immediate real-time data and analytics. As an example, Vogel says the cloud would be an appropriate resource if one was concerned with the most recent five minutes of data under volume-weighted average pricing (VWAP).
"The cloud isn't cheap," he says. "Its best use is not for data on a security that hasn't traded in two weeks. Unless the objective is to cover the complete global universe, like [agency broker and trading technology provider] ITG does." Vogel points to intra-day pricing and intra-day analytics as tasks that could be enhanced, accelerated or otherwise improved upon through use of cloud computing resources. Data managers should think of securities data in two layers—a descriptive or identification layer and a pricing layer—both of which have to be processed and filtered to generate usable data that goes into cloud resources.
The active universe of securities as a whole, which includes fundamental data and analytics on securities, is really a super-set of what firms are trying to handle in terms of data on a daily basis, observes Vogel. With that in mind, the task for applying cloud computing to big data could actually be making big data smaller, or breaking it down into parts—cutting it down to size. That certainly will cut down on the bandwidth needed to send and retrieve data to and from the cloud, and consistently reconcile local data and cloud-stored data.
If nothing else, this is certainly a different way of looking at handling big data. It is worth considering whether going against the conventional or prevailing wisdom could lead data managers to a better way. Inside Reference Data would like to know what you think about this. We've reactivated our LinkedIn discussion group, where you can keep up with new stories being posted online, live tweets covering conference discussions, and provide feedback to questions and opinion pieces from IRD.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: http://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
‘We started late’: Oracle makes case for its market data cloud offering
Executives from Oracle, LSEG, and CJC detailed the ‘eye-opening’ performance and latency of the Oracle Cloud Infrastructure.
From frozen assets to fire sales: The datasets to prevent your investments going up in smoke
The IMD Wrap: As severe weather conditions become more commonplace, Max wonders which datasets will prove most useful for those navigating a changing world.
Opra considers ‘dynamic load balancing’ for options market
The data distributor recently completed a challenging project to build a 96-line feed. This new endeavor could prove just as challenging (but perhaps necessary) for the industry that will use it.
Market data for private markets? BlackRock sees its big opportunity
The investment giant’s CEO said he envisions a far bigger private market business in 2025.
Bloomberg debuts GenAI news summaries
The AI-generated summaries will allow financial professionals to consume more data, faster, officials say.
Substantive Research reveals new metrics for market data negotiations framework
The research firm will make its industry-derived project available for public consumption next month.
As the ETF market grows, firms must tackle existing data complexities
Finding reliable reference data is becoming a bigger concern for investors as the ETF market continues to balloon. This led to Big xyt to partner with Trackinsight.
Artificial intelligence, like a CDO, needs to learn from its mistakes
The IMD Wrap: The value of good data professionals isn’t how many things they’ve got right, says Max Bowie, but how many things they got wrong and then fixed.