As the industry is inundated with data management issues, putting effective internal governance policies and complying with global reporting obligations, have jumped to the top of banks’ agendas. Christopher Butler, chief data officer for Asia-Pacific International Markets at HSBC, explained how it is necessary for financial institutions to have consistent data governance frameworks across all parts of their business. This includes taking into account how data is captured, who owns the data, who has access to it, and measuring data quality consistently.
Although banks worldwide are mandated to comply with the Basel Committee on Banking Supervision (BCBS) regulations—such as BCBS 239, which stipulates principles for effective risk data aggregation and risk reporting—Butler said that the industry should take a step further in terms of improving global data governance.
Part of the challenge that banks have is that we have lots of data pools, but if you don’t tag that data and index it, how do you find it again?
Chuck Teixeira
“We must continue to be broader and have [consistent] governance definitions across all data aspects,” he explained. “Especially for an organization like HSBC, it is impossible to consolidate and use the data from Bangladesh to Argentina to Ukraine if we don’t have that. So in terms of governance, ownership, definitions, and consolidation, it is critical across all operations.”
Speaking on a data governance panel at this year’s Asia Pacific Financial Information Conference (Apfic) in Hong Kong, Butler outlined parts of how the bank is building out its data lineage program, enabling it to have a granular view of its data across the entire organization. According to Butler, the bank can dig down into the data, extract important elements, and identify aspects such as the owner of the data.
“We can break the data elements into customers, corporations and individuals, or non-organizations,” he added. “We are able to use that framework to put an owner against it.”
Earlier this year, WatersTechnology also spoke to Chuck Teixeira, chief administrative officer and head of transformation at HSBC, about the organization’s global data transformation project where it is using machine-learning techniques to measure the quality of its data across five different dimensions—accuracy, completeness, uniqueness, validity, and consistency—and uses granular details to link correlated data. Teixeira outlined how the bank is using artificial intelligence to index and tag data from trillions of transactions and external resources to build a reusable gold source of data.
“Part of the challenge that banks have is that we have lots of data pools, but … if you don’t tag that data and index it, how do you find it again? So that is part of what we have built, a reusable data asset. And this has been a significant undertaking over the last year,” says Teixeira.
The bank is now shifting its data to a cloud-based data lake where it can leverage the environment’s scalability, accelerate operational processes, and develop new capabilities, such as a client intelligence utility, which is part of a wider client services project called Phoenix.
Further reading
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: http://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
In 2025, keep reference data weird
The SEC, ESMA, CFTC and other acronyms provided the drama in reference data this year, including in crypto.
Asset manager Saratoga uses AI to accelerate Ridgeline rollout
The tech provider’s AI assistant helps clients summarize research, client interactions, report generation, as well as interact with the Ridgeline platform.
CDOs evolve from traffic cops to purveyors of rocket fuel
As firms start to recognize the inherent value of data, will CDOs—those who safeguard and control access to data—finally get the recognition they deserve?
It’s just semantics: The web standard that could replace the identifiers you love to hate
Data ontologists say that the IRI, a cousin of the humble URL, could put the various wars over identity resolution to bed—for good.
The art of communication: Data pros need better messaging
As the CDO of a tier-one bank puts it, when there’s an imbalance in communication between the data organization and the business (much less other technology heads) “that creates problems.”
Does TP Icap-AWS deal signal the next stage in financial cloud migration?
The IMD Wrap: Amazon’s deal with TP Icap could have been a simple renewal. Instead, it’s the stepping stone towards cloudifying other marketplace operators—and their clients.
T. Rowe Price’s Tasitsiomi on the pitfalls of data and the allures of AI
The asset manager’s head of AI and investments data science gets candid on the hype around generative AI and data transparency.
Waters Wavelength Ep. 298: GenAI in market data, and everything reference data
Reb is back on the podcast to discuss licensing sticking points for market and reference data.