Skip to main content

SigOpt Raises $6.6 Million in Series A Funding

The startup has a machine learning platform that uses Bayesian techniques to improve model development and research.

golden-gate-bridge
SigOpt is headquartered in San Francisco.

This is the second round of fund raising for the company, which raised $2 million at the beginning of 2015 from Andreessen Horowitz and Data Collective. Those two firms are back for this round of funding, joined by SV Angel, Stanford University and Blumberg Capital.

SigOpt has a platform that uses Bayesian-led machine learning optimization that allows hedge fund quants to improve their algorithmic-trading models and helps large banks enhance their risk models. The platform can be bolted on top of existing machine learning, AI and predictive analytics pipelines. It aims to cut down on the time and costs associated with traditional A/B testing by reducing the time and resources spent on fine tuning these models through the use of Bayesian techniques.

This round of funding will help the firm to expand its capabilities and grow its team.

On Monday, WatersTechnology will publish a deeper dive into what SigOpt is working on and why it's generating interest from investors.

Doing a deal? Prioritize info security early

Engaging information security teams early in licensing deals can deliver better results and catch potential issues. Neglecting them can cause delays and disruption, writes Devexperts’ Heetesh Rawal in this op-ed.

Most read articles loading...

You need to sign in to use this feature. If you don’t have a WatersTechnology account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here