Max Bowie: Mind Your P’s and Q’s

In high-frequency, low-latency markets, you might be forgiven for thinking the old adage, “Marry in haste, repent at leisure” no longer applies. You’d be wrong. Data and trading are faster than ever, but that doesn’t mean any decision should be rushed, whether it be a decision to place a trade, or a decision to buy a new service.
While participants in Inside Market Data’s recent latency webcast extolled the benefits of achieving ultra-low latency market data delivery, they also warned that in some circumstances it can be better to sit out a period of unexpected activity—even if it means that capital goes unused for a period—that a trading algorithm may not be prepared for, or where price movements are not clear: better to not make money than to lose it by a mistake.
“The faster you know [when not to trade], the better you can manage your risk from that point of view,” says Alejandro Canete, head quant developer at Pan Alpha Trading. But to be in a position to make that choice, you must first have a low-latency infrastructure that lets you trade—or not—competitively. In many cases, this has resulted in firms building high-performance architectures that run separately from their legacy market data platforms.
“The guys with a single algo are measuring everything in nanoseconds, while the guys who manage strategies across multiple algos or maybe the risk around this … may be in the microsecond or low millisecond range. It’s the ecosystem of players who need their data in slightly different places,” says Barry Thompson, CTO of Tervela. “So you end up with a parallel market data plant … which people are dipping into for a different class of data.”
Careful Attention
This doesn’t mean that firms should treat their low-latency content and data architectures differently. In fact, they should pay extra careful attention when dealing with the new paradigms of low latency, as administrative errors—just like bad trades—can be accelerated in high-performance infrastructures. Say, for example, you accidentally allow 10 traders access to data that they aren’t authorized to view. You could expect a big penalty fee from the aggrieved exchange, with charges back-dated to when your lapse in control began. Now, say you allow 10 algorithms access to the same data: The amount of trading an algorithm can perform compared to a human trader—and hence, the value it derives from the data—is multiplied, so an entitlements error in your low-latency architecture could be far more costly than one relating to the infrastructure that serves the rest of your business. Plus, these per-application fees are typically much higher than ordinary per-user fees to begin with.
This requires comprehensive understanding of exchange policies on data usage—which has prompted the creation of databases such as The Exchange Guide (now owned by data technology vendor B2N) and Ballintrae’s Exchange Rules and Regulations Database—to ensure compliance with the rules governing their data.
However, firms must also change the way they approach data in a low-latency world, and contracts must adapt to reflect this, says Paul Hinton, commercial technology partner at London-based law firm Kemp Little LLP. Not only must contracts reflect the demands of a low-latency environment where a small delay can be as critical as an outright system failure, meaning that service-level agreements must be more granular and adhere strictly to specified performance levels; they should also take into account that firms need to be more agile, and that contracts must be more flexible to accommodate this. For example, Hinton says, firms must be free to cancel a service in favor of a faster one as vendors compete over performance, or to run competing vendors alongside each other and adopt a “pay-as-you-go” model, depending on which is faster—and hence, which the firm uses on a particular day.
Low latency is about being able to make the right decisions quickly on the most timely data. Without the “right decisions,” you’re making bad decisions, faster. And a low-latency infrastructure without the right policies and administration frameworks in place is like a dog chasing its tail—endlessly expending resources to chase something unattainable. It can go as fast as it likes, but it’ll never catch it.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: https://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Trading Tech
The TNS-Radianz deal hints at underlying issues in trader voice
Waters Wrap: As part of its cost-cutting program, BT shipped its Radianz unit to TNS, but the deal didn’t include its Trading & Command trader voice property. Anthony found that interesting.
OEMS interest sputters
Combined order and execution management systems once offered great promise, but large buy-side firms increasingly want specialization, leaving OEMS vendors to chase smaller asset managers in a world of EMS consolidation.
FactSet adds MarketAxess CP+ data, LSEG files dismissal, BNY’s new AI lab, and more
The Waters Cooler: Synthetic data for LLM training, Dora confusion, GenAI’s ‘blind spots,’ and our 9/11 remembrance in this week’s news roundup.
DORA delay leaves EU banks fighting for their audit rights
The regulation requires firms to expand scrutiny of critical vendors that haven’t yet been identified.
Etrading wins UK bond tape, R3 debuts new lab, TNS buys Radianz, and more
The Waters Cooler: The Swiss release an LLM, overnight trading strays further from reach, and the private markets frenzy continues in this week’s news roundup.
Fintech powering LSEG’s AI Alerts dissolves
ModuleQ, a partner and investment of Refinitiv and then LSEG since 2018, was dissolved last week after it ran out of funding.
Halftime review: How top banks and asset managers are tackling projects beyond AI
Waters Wrap: Anthony highlights eight projects that aren’t centered around AI at some of the largest banks and asset managers.
Speakerbus goes bust, Broadridge buys Signal, banks mandate cyber training, and more
The Waters Cooler: The Federal Reserve is reserved on GenAI, FloQast partners with Deloitte Australia, UBS invests in Domino Data Lab, and more in this week’s roundup.