Choosing the Right Frame for Analyzing Data
'Exponential growth' of intelligence makes analytics and governance of data trickier
The leaders of financial firms are beginning to realize the value of data analytics and the necessity of having the right data governance framework to direct the use of analytics, according to operations, analytics, marketing and business executives at firms, service providers and a government-funded research organization.
Ways to define data analytics issues and map data accordingly are beginning to emerge, these executives also say.
The first step involves C-level executives recognizing data analytics problems, says Leif Hanlen, a business development executive at the Commonwealth Scientific Industrial Research Organization (CSIRO), which is funded by Australia's national and state governments to develop digital operations for the country's domestic industries, and Data61, a unit of CSIRO focused on industries' data requirements.
"What's changed in the analytics space is that the hardware's exponential growth has become doubly exponential in the software world," says Hanlen. "So we're seeing exponential on exponential growth. In the analytics world, that means the intelligence you can expect today is almost unpredictable, given what you might see in a few months from now.
"The nature of analysis means the problems that are solved tend to be solved much faster and more broadly," he adds. "The question tends to be how do you make all of this smart so it works with your enterprise system, which is obviously not evolving at that same speed?"
In the absence of proper governance and proper provenance… then what we get at the end can be a case of ‘garbage in, garbage out
Leif Hanlen, Commonwealth Scientific Industrial Research Organization
Data analytics used to be called "decision support systems," observes Darie Urbanky, vice president of investment and wealth management services IT at CI Investments in Toronto. "We depend so much on data," he says. "The groups I support, such as trade order management systems, are incredibly sensitive to data. We're in the midst of adding risk and performance attribution systems in the groups we're managing. It's incredible how much data is required and the data quality that you need."
Mapping data using analytics can provide value to the front office in the form of business intelligence, says Urbanky. "Business questions never come up just a single time," he says. "For unstructured data, [mapping] is still valuable and relevant."
Mapping can include machine learning techniques, says Brian Sentance, CEO of Xenomorph, an enterprise data management (EDM) services provider. "There are rules-based mappings where people prescriptively define what the mapping is. Then there is ‘fuzzy logic,' which actively extends what you have, using defined rules, to do matching and reconciliation," he says.
Flexible Frameworks
Data analytics systems built to work with firms' existing operations systems, such as those created by business intelligence and visualization tools provider Information Builders, might not need data governance plans that are as strict as those required for operating data warehouses, says Jake Freivald, the company's New York-based vice president of product marketing.
"Not everything has to be governed the same way," he says. "Compared to a strict, rigid and top-down approach, that's a dramatic shift by the analysts, architects and others who are now trying to achieve a balance in governance. It's a big change of mindset."
Still, some governance is necessary, as Hanlen explains. "In the absence of proper governance and proper provenance—as in where the data came from and who did something to it—then what we get at the end can be a case of ‘garbage in, garbage out,'" he says. "It's always a risk. There are ways of mitigating those risks, but if you don't know how the data was put into the system, you're never entirely confident that what comes out will be based on reality, rather than someone's version of it."
If a governance framework cannot be found for data being received, firms' ability to best use that data depends on providing "appropriate incentives and governance so we don't really ever throw data away," says Hanlen. "We can always convert it, change it or refine it, but we need to build in approaches that treat data as sacrosanct. People will always want to go back to the source."
Iterations and Sharing
Defining solutions through data governance plans is more challenging because the "iterative nature" by which data scientists work is changing, according to Baiju Devani, director of analytics at the Investment Industry Regulatory Organization of Canada (IIROC).
"Traditionally, it's been more along the lines of ‘you tell me why you need the data and what you need,' then we figure out a solution for you," he says. "The cultural change for us when analytics are involved is being honest with our stakeholders and saying that, more than half the time, we don't quite know what the solution is ... There's no one fixed definition of the data most of the time. We need to go back to the data over and over again because we're going through this iterative process.
"Having fixed mandates around your requirement, where we go get the data and you [a vendor or provider] come back with the solution—it's not quite like that anymore," Devani adds.
Not everything has to be governed the same way. Compared to a strict, rigid and top-down approach, that’s a dramatic shift by the analysts, architects and others who are now trying to achieve a balance in governance. It’s a big change of mindset
Jake Freivald, Information Builders
Data governance and analysis can potentially be improved by building mechanisms to share data with other organizations, explains Hanlen. "When you have too much data to deal with, the question should be how to build analytics that don't throw material away," he says. "Keep a good sample of the data that lets you infer, even if you can't see the original anymore."
Within EDM, however, data analytics is seen as "downstream," says Xenomorph's Sentance. "The analytics applied to data and the derived data they produce should be treated as an asset to be managed, audited, reported on and governed, just as any raw piece of data would be."
Rules set by data vendors and by exchanges can also present a challenge to sharing data, however advanced and innovative a data sharing system may be, says John Denheen, data team lead at London-based proprietary trading firm Tyler Capital. "We try to work with academics who have some good ideas about strategies but don't have the means to access these larger datasets," he says.
Machine learning can also prove useful for implementing analytics under a governance plan, including following rules for data sharing, as Denheen explains. "One of the big issues with getting good reference data is that you need to be able to tack it on to other datasets," he says. "We might buy market data from one provider and reference data from a completely different provider, then try to join those two sets together. That's a major challenge."
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: http://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
In 2025, keep reference data weird
The SEC, ESMA, CFTC and other acronyms provided the drama in reference data this year, including in crypto.
Asset manager Saratoga uses AI to accelerate Ridgeline rollout
The tech provider’s AI assistant helps clients summarize research, client interactions, report generation, as well as interact with the Ridgeline platform.
CDOs evolve from traffic cops to purveyors of rocket fuel
As firms start to recognize the inherent value of data, will CDOs—those who safeguard and control access to data—finally get the recognition they deserve?
It’s just semantics: The web standard that could replace the identifiers you love to hate
Data ontologists say that the IRI, a cousin of the humble URL, could put the various wars over identity resolution to bed—for good.
The art of communication: Data pros need better messaging
As the CDO of a tier-one bank puts it, when there’s an imbalance in communication between the data organization and the business (much less other technology heads) “that creates problems.”
Does TP Icap-AWS deal signal the next stage in financial cloud migration?
The IMD Wrap: Amazon’s deal with TP Icap could have been a simple renewal. Instead, it’s the stepping stone towards cloudifying other marketplace operators—and their clients.
T. Rowe Price’s Tasitsiomi on the pitfalls of data and the allures of AI
The asset manager’s head of AI and investments data science gets candid on the hype around generative AI and data transparency.
Waters Wavelength Ep. 298: GenAI in market data, and everything reference data
Reb is back on the podcast to discuss licensing sticking points for market and reference data.