Big-Time Data Terminology
The term "big data" is so broad that when commenting about data management and the industry, it's better to consider topics such as data quality, data consistency or deriving value from data – or at least discuss matters in those terms.
A presentation given this past week by Pierre Feligioni, head of real-time data strategy at S&P Capital IQ, defined "big data" as "actionable data," and sought to portray big data concerns as really being about four issues: integration, technology, content and scalability.
Integration, particularly the centralization of reference data, is the biggest challenge for managing big data, as Feligioni sees it. While structured data is already quite "normalized," unstructured data, which can include messaging, emails, blogs and Twitter feeds, needs to be normalized.
Unstructured data is fueling rapid exponential growth in data volumes, justifying the name "big data." Data volumes are counted in terabytes (1,000 gigabytes), or even petabytes (1,000 terabytes). When it comes to unstructured data at those levels, central repositories that can collect and normalize data – and coordinate it with structured data – are a must, Feligioni contends.
Technology and scalability the building blocks necessary to make such central repositories functional, as he describes it. Natural language processing and semantic data approaches are also being applied. "The biggest challenge is understanding documents and creating analytics on top of this content, for the capability to make a decision to buy or sell," says Feligioni.
Scalability makes it possible to process more and more information, and is achieved through new resources, such as cloud computing, which carry their own issues and require additional decisions [as described in my column two weeks ago, "Cloud Choices"].
Everything that Feligioni calls part of "big data" actually revolves around getting higher quality data by incorporating more sources and checking them against each other to keep that data consistent. It's also about creating new value from data that can be acted upon by trading and investment operations professionals.
So, whatever buzzwords one uses, whether "big data" or sub-categories under that umbrella, what they are really talking about is quality, consistency and value. Other terms just describe the means.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: https://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
Market data costs defy cyclicality
Trading firms continue to grapple with escalating market data costs. Can innovative solutions and strategic approaches bring relief?
LSEG partners with Citi, DTCC goes on-chain, AI on the brain, and more
The Waters Cooler: Trading Technologies buys OpenGamma, CT Plan updates, and the beginning of benchmarking in this week’s news roundup.
AI & data enablement: A looming reality or pipe dream?
Waters Wrap: The promise of AI and agents is massive, and real-world success stories are trickling out. But Anthony notes that firms still need to be hyper-focused on getting the data foundation correct before adding layers.
Data managers worry lack of funding, staffing will hinder AI ambitions
Nearly two-thirds of respondents to WatersTechnology’s data benchmark survey rated the pressure they’re receiving from senior executives and the board as very high. But is the money flowing for talent and data management?
Data standardization is the ‘trust accelerator’ for broader AI adoption
In this guest column, data product managers at Fitch Solutions explain AI’s impact on credit and investment risk management.
As AI pressures mount, banks split on how to handle staffing
Benchmarking: Over the next 12 months, almost a third of G-Sib respondents said they plan to decrease headcount in their data function.
Everyone wants to tokenize the assets. What about the data?
The IMD Wrap: With exchanges moving market data on-chain, Wei-Shen believes there’s a need to standardize licensing agreements.
FIX Trading Community recommends data practices for European CTs
The industry association has published practices and workflows using FIX messaging standards for the upcoming EU consolidated tapes.