Maximizing Metadata
Unlike the "telephony metadata" at the center of the US National Security Agency (NSA) surveillance controversy of recent weeks, the use of financial operations metadata should not reap global criticism.
Metadata can commonly mean a set of data comprised of attributes for each piece of data. In phone records, as was emphasized in the coverage of the NSA story, this means items such as length of calls, time of day and frequency of calls between the same parties. But for financial operations data, as discussed by attendees of last week's Sifma Tech Expo, this can be data about the parties to a transaction whose price is the starting, original data element, or other descriptive data about those transactions.
For instance, metadata can mean attributes created by an outside service provider to better enrich and calculate financial transaction data, as Eagle Investment Systems would define it, according to Jeremy Skaling, head of product management at the data technology and services provider. The company also sees metadata as a commodity that can be collected at a central point or utility, such as its Metadata Center service within its data management product.
Metadata may also be thought of as a categorization of firms' customer data to be available for linking to transaction data and other types of data, as Bob Molloy, associate partner, strategy and transformation, IBM Global Business Services, stated during the Sifma conference.
"For almost all our clients, when they put in compliance systems, they do it for that one system—with point-to-point linkage," he says. "All of a sudden, that won't work anymore. You must have flexible infrastructure. Being able to tie in metadata is becoming more important because you have to be able to link these records together effectively to be able to find all of them."
Capturing metadata has also become an important part of using the Data Management Maturity (DMM) model now taking hold at firms in the industry. Bank of America chief data officer John Bottega included the capture of metadata as a key element when building a new data governance program built on the DMM model last year.
The DMM model, released last year after three years in development, defines the parts, processes and capabilities necessary for effective data management. The model provides criteria for evaluating data management goals. Organizations are deriving value from the model itself, but have to think about metadata traits on top of the DMM model to really achieve the goals that the model's developers are aiming for—better data management to avoid the risks that caused damage to the industry in 2008.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: http://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
In 2025, keep reference data weird
The SEC, ESMA, CFTC and other acronyms provided the drama in reference data this year, including in crypto.
Asset manager Saratoga uses AI to accelerate Ridgeline rollout
The tech provider’s AI assistant helps clients summarize research, client interactions, report generation, as well as interact with the Ridgeline platform.
CDOs evolve from traffic cops to purveyors of rocket fuel
As firms start to recognize the inherent value of data, will CDOs—those who safeguard and control access to data—finally get the recognition they deserve?
It’s just semantics: The web standard that could replace the identifiers you love to hate
Data ontologists say that the IRI, a cousin of the humble URL, could put the various wars over identity resolution to bed—for good.
The art of communication: Data pros need better messaging
As the CDO of a tier-one bank puts it, when there’s an imbalance in communication between the data organization and the business (much less other technology heads) “that creates problems.”
Does TP Icap-AWS deal signal the next stage in financial cloud migration?
The IMD Wrap: Amazon’s deal with TP Icap could have been a simple renewal. Instead, it’s the stepping stone towards cloudifying other marketplace operators—and their clients.
T. Rowe Price’s Tasitsiomi on the pitfalls of data and the allures of AI
The asset manager’s head of AI and investments data science gets candid on the hype around generative AI and data transparency.
Waters Wavelength Ep. 298: GenAI in market data, and everything reference data
Reb is back on the podcast to discuss licensing sticking points for market and reference data.