CDOs Must Build Bridges, Not Silos
"Market data and reference data functions are, if not unifying into a single unit, converging under a common structure."

The separation of market and reference data functions that took place over a decade ago was not without good cause: Until then, reference data was largely managed within a firm’s market data function, and didn’t get the recognition and support from senior management that it deserved. If memory serves me correctly, poor reference data was the number one cause of failed trades—a cost that has been eliminated to a large degree as a result of vendors like Markit creating products such as the Reference Entity Database, and firms getting their houses in order, creating internal “golden copies” of securities master data, and critically, translating those failed trades into a profit-and-loss (P&L) argument that alarmed senior managers enough to set aside separate budgets for reference data projects, processes and staff.
However, the challenges associated with the sheer volumes and complexity of data now being captured, processed and monitored by financial firms mean that data is a much bigger challenge than in previous years, and therefore accounts for a larger share of budget, and has inherent in it higher levels of risk. To address the reality that trading firms increasingly have more in common with data processing firms, banks and asset managers alike are appointing chief data officers to oversee all aspects of a firm’s data management—from market data to reference data, from data held in internal documents to confidential client data. To perform these roles successfully, CDOs must work hand-in-hand with various other departments, from operations to trading functions. And, of course, they have direct oversight of the most data-intensive areas of all—their market data and reference data departments.
As a result, market data and reference data functions are, if not unifying into a single unit, converging under a common structure. This became more evident than ever at the recent European Financial Information Summit in London, where market data professionals were as concerned about provenance as about prices, and about legal entity identifiers (LEIs) as much as latency, and where reference data experts were as concerned about real-time changes to information as they were about traditional static data.
This convergence also exists beyond the world of end-user firms: For example, enterprise data management software platform vendor GoldenSource has fully integrated its market data management module with its core suite of EDM capabilities. According to the vendor, this will not only help centralize overall data management, but will also make it easier to add coverage of new datasets, and to manage a firm’s response to regulatory requirements—such as the Fundamental Review of the Trading Book (FRTB) proposals from the Bank for International Settlements’ Basel Committee on Banking Supervision, which will take effect in 2019, which GoldenSource managing director of sales and client operations Neill Vanlint says “will change forever the way that risk and finance manage data”—centrally, where those regulatory demands require access to market data and reference data.
To be sure, another reason for this change is the increasingly strict and burdensome regulatory environment. This is not to say that firms believe bringing these groups closer will directly save money, but rather that by creating closer ties between all data assets—and the people, systems and groups that govern them—they will be better placed to obtain a single and more accurate view of their data, and will also therefore be better placed to respond quickly and accurately to regulatory reporting demands from regulators, minimizing both fines and the cost of providing this function.
To address the reality that trading firms increasingly have more in common with data processing firms, banks and asset managers alike are appointing chief data officers to oversee all aspects of a firm’s data management
It seems that as we see greater divergence of datasets themselves as new types of data evolve, and others are separated from one another for practical and budgetary purposes, it will become even more important that the management functions that govern that data must do the opposite, and converge in order to manage this ever-broadening array of data assets.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: http://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Emerging Technologies
Standard Chartered goes from spectator to player in digital asset game
The bank’s digital assets custody offering is underpinned by an open API and modular infrastructure, allowing it to potentially add a secondary back-end system provider.
Saugata Saha pilots S&P’s way through data interoperability, AI
Saha, who was named president of S&P Global Market Intelligence last year, details how the company is looking at enterprise data and the success of its early investments in AI.
Data partnerships, outsourced trading, developer wins, Studio Ghibli, and more
The Waters Cooler: CME and Google Cloud reach second base, Visible Alpha settles in at S&P, and another overnight trading venue is approved in this week’s news round-up.
Are we really moving on from GenAI already?
Waters Wrap: Agentic AI is becoming an increasingly hot topic, but Anthony says that shouldn’t come at the expense of generative AI.
Cloud infrastructure’s role in agentic AI
The financial services industry’s AI-driven future will require even greater reliance on cloud. A well-architected framework is key, write IBM’s Gautam Kumar and Raja Basu.
Waters Wavelength Ep. 310: SigTech’s Bin Ren
This week, SigTech’s CEO Bin Ren joins Eliot to discuss GenAI’s progress since ChatGPT’s emergence in 2022, agentic AI, and challenges with regulating AI.
Microsoft exec: ‘Generative AI is completely passé. This is the year of agentic AI’
Microsoft’s Symon Garfield said that AI advancements are prompting financial services firms to change their approach to integrating AI-powered solutions.
Inside the company that helped build China’s equity options market
Fintech firm Bachelier Technology on the challenges of creating a trading platform for China’s unique OTC derivatives market.