Soul of a New Data Machine
In another life, I write about comedy performance—reviewing shows and specials, and interviewing comics and comedic actors. As part of that, I'm an avid podcast listener. None of that ever seemed likely to overlap with what I normally cover here, until I caught up to some remarks from author Douglas Rushkoff in a recent appearance on comedian Marc Maron's podcast, where Rushkoff spurred an exchange with Maron about big data.
Rushkoff writes mostly about online media, but his latest book, Present Shock, contains a few short segments relevant to financial services operations, on how collection of big data operates, as well as how using algorithms can wreak havoc, as they did in the trading space when BATS Global Markets debuted its IPO.
Responding to an analogy from Maron about "big data" and "Big Brother," Rushkoff said, "We would like to believe big data is personified and there's a guy at the top of the corporation collecting it, but there isn't. What we're really doing is programming our technologies to extract more value from us. We're the shareholders on the other end."
Months ago, David Saul, chief scientist for State Street, proposed the concept of "smart data" as preferable to "big data." Rushkoff echoes what Saul was driving for. Although Rushkoff was talking about how "big data" can be used in retail, to get more intelligence on customer buying trends, he still was emphasizing how "big data" can be established and applied intelligently, as financial services firms are trying to do. From Saul's perspective, data management programming ought to extract value from data by adding the results of risk calculations to the data.
Nearly a year ago, BNY Mellon's Dennis Smith described the challenges inherent in efforts to draw insight from high volumes of data. Foremost of those challenges was getting high enough data quality when validating collected data to conduct the kind of risk calculations and risk management State Street's Saul aspires to support.
The challenge of harnessing big data continues for the financial industry. Will the industry learn what to do with it just by deploying available technology to find and deliver the data's value? Or does big data need to be "personified," as Rushkoff puts it, with someone at the top of the organization, or at least close enough to the top, like a chief data officer, collecting it and making use of it?
Rushkoff's intent in his remarks likely was to express caution about who makes use of personal data and how, but in financial industry data management, his questions suggest a different problem—that computing power by itself isn't enough to make big data valuable for the industry's purposes.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: https://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Data Management
Data standardization is the ‘trust accelerator’ for broader AI adoption
In this guest column, data product managers at Fitch Solutions explain AI’s impact on credit and investment risk management.
As AI pressures mount, banks split on how to handle staffing
Benchmarking: Over the next 12 months, almost a third of G-Sib respondents said they plan to decrease headcount in their data function.
Everyone wants to tokenize the assets. What about the data?
The IMD Wrap: With exchanges moving market data on-chain, Wei-Shen believes there’s a need to standardize licensing agreements.
FIX Trading Community recommends data practices for European CTs
The industry association has published practices and workflows using FIX messaging standards for the upcoming EU consolidated tapes.
TCB Data-Broadhead pairing highlights challenges of market data management
Waters Wrap: The vendors are hoping that blending TCB’s reporting infrastructure with Broadhead’s DLT-backed digital contract and auditing engine will be the cure for data rights management.
CME, LSEG align on market data licensing in GenAI era
The two major exchanges say they are licensing the use case—not the technology.
Data infrastructure must keep pace with pension funds’ private market ambitions
As private markets grow in the UK, Keith Viverito says the infrastructure that underpins the sector needs to be improved, or these initiatives will fail.
AI enthusiasts are running before they can walk
The IMD Wrap: As firms race to implement generative and agentic AI, having solid data foundations is crucial, but Wei-Shen wonders how many have put those foundations in.